Some Properties and Regions of Variability of Affine Harmonic Mappings and Affine Biharmonic Mappings

نویسندگان

  • Sh. Chen
  • S. Ponnusamy
  • Xiantao Wang
چکیده

Recommended by Narendra Kumar Govil We first obtain the relations of local univalency, convexity, and linear connectedness between analytic functions and their corresponding affine harmonic mappings. In addition, the paper deals with the regions of variability of values of affine harmonic and biharmonic mappings. The regions their boundaries are determined explicitly and the proofs rely on Schwarz lemma or subordination. A planar harmonic mapping in a simply connected domain D ⊂ C is a complex-valued function f u iv defined in D such that u and v are real harmonic in D, that is, Δu 0 and Δv 0. Here Δ represents the complex Laplacian operator Δ Δ 4 ∂ 2 ∂z∂z : ∂ 2 ∂x 2 ∂ 2 ∂y 2. The mapping f has a canonical decomposition f h g, where h and g are analytic holomorphic in D 1, 2. Lewy's theorem tells us that a harmonic mapping f is locally univalent in D if and only if its Jacobian J f z / 0 for each z ∈ D 3. A four-time continuously differentiable complex-valued function F u iv in D is biharmonic if and only if the Laplacian of F is harmonic. Note that ΔF is harmonic in D if F satisfies the biharmonic equation ΔΔΔF 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Approach to Regions of Variability via Subordination of Harmonic Mappings

A planar harmonic mapping in a simply connected domain D ⊂ C is a complex-valued function f u iv defined in D for which both u and v are real harmonic in D, that is, Δf 4fzz 0, where Δ represents the Laplacian operator. The mapping f can be written as a sum of an analytic and antianalytic functions, that is, f h g. We refer to 1 and the book of Duren 2 for many interesting results on planar har...

متن کامل

Some common fixed point theorems for Gregus type mappings

In this paper, sufficient conditions for the existence of common fixed points for a compatible pair of self maps of Gregustype in the framework of convex metric spaces have been obtained. Also, established the existence of common fixed points for a pair of compatible mappings of type (B) and consequently for compatible mappings of type (A). The proved results generalize and extend some of the w...

متن کامل

On some properties of solutions of the biharmonic equation

A 2p-times continuously differentiable complex-valued function f = u+ iv in a simply connected domainΩ ⊆ C is p-harmonic if f satisfies the p-harmonic equation ∆p f = 0. In this paper, we investigate the properties of p-harmonic mappings in the unit disk |z| < 1. First, we discuss the convexity, the starlikeness and the region of variability of some classes of p-harmonic mappings. Then we prove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009